Flush, Gauss, and Reload A Cache-Attack on the BLISS Lattice-Based Signature Scheme

<u>Leon Groot Bruinderink</u>, Andreas Hülsing, Tanja Lange and Yuval Yarom

August 18th, 2016

- Lattice-based cryptography: promising post-quantum secure alternative.
- Active research on theoretical and practical security.
- But what about security of implementations?

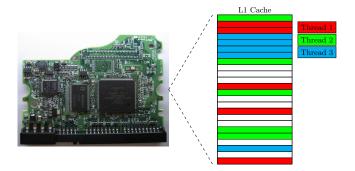
- The first side-channel attack on a lattice-based signature scheme.
- Exploits information leakage from the discrete Gaussian sampler via cache memory.
- Attack target: BLISS, an efficient lattice-based signature scheme.
- BLISS also included in strongSwan (library for IPsec-based VPN).

Cache Timing Attacks

< 一型

Cache (Timing) Attacks

- Cache-memory: small, fast memory shared among all threads.
- Bridge the gap between processor speed and memory speed.
- Data is stored in cache-lines, typically 64 Bytes.



Cache (Timing) Attacks

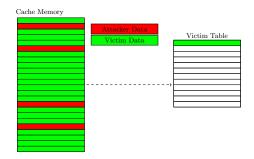
• Attacker fills specific cache lines with his data.

Cache Memory

5	
	Attacker Data
	Victim Data

Cache (Timing) Attacks

- Attacker notices that victim uses some part of cache.
- Learns cache-line of data used by victim.



BLISS

2

・ロト ・聞ト ・ヨト ・ヨト

- Bimodal Lattice Signature Scheme (BLISS) (CRYPTO '13 by Ducas, Durmus, Lepoint and Lyubashevsky)
- Implementations available via NTRU lattices (polynomials in $R_q = \mathbb{Z}_q[x]/(x^n + 1)$, $n = 2^r$, prime q).

• For $f,g \in R_q = \mathbb{Z}_q[x]/(x^n+1)$:

$$f \cdot g = \mathbf{f} \mathbf{G} = \mathbf{g} \mathbf{F}$$

where $F, G \in \mathbb{Z}_q^{n \times n}$, whose columns are rotations of \mathbf{f}, \mathbf{g} , with possibly opposite sign:

$$\mathbf{F} = \begin{bmatrix} f_0 & -f_{n-1} & \dots & -f_1 \\ f_1 & f_0 & \dots & -f_2 \\ \dots & \dots & \dots & \dots \\ f_{n-1} & f_{n-2} & \dots & f_0 \end{bmatrix}$$

- Secret key S = (f, 2g + 1) ∈ R_q² with f, g sparse and typically entries in {±1,0}
- Public key $\mathbf{A} = (a_1, a_2) \in R_q^2$ satisfying:

$$a_1s_1 + a_2s_2 \equiv q \mod 2q$$

- Computed as $a_q = (2g+1)/f \mod 2q$ (restart if f not invertible) and $\mathbf{A} = (2a_q, q-2)$.
- Attacker can validate correctness for candidate of key f with the public key and compute 2g + 1.
- Both $-\mathbf{S}$ and \mathbf{S} are valid as secret key.

• Simplified version of the BLISS signature algorithm for message μ :

- Simplified version of the BLISS signature algorithm for message μ :
- **1** Sample $\mathbf{y}_1 \leftarrow D_{\mathbb{Z}^n,\sigma}$.

- Simplified version of the BLISS signature algorithm for message $\mu:$
- **1** Sample $\mathbf{y}_1 \leftarrow D_{\mathbb{Z}^n,\sigma}$.
- **2** Construct vector \mathbf{u} , using \mathbf{y}_1 and public key \mathbf{A} .

- Simplified version of the BLISS signature algorithm for message μ :
- **1** Sample $\mathbf{y}_1 \leftarrow D_{\mathbb{Z}^n,\sigma}$.
- **2** Construct vector \mathbf{u} , using \mathbf{y}_1 and public key \mathbf{A} .
- So Construct challenge $\mathbf{c} = H(\lfloor \mathbf{u} \rceil \mod 2q, \mu) \in \{0, 1\}^n$ with $||\mathbf{c}||_1 = \kappa$

- Simplified version of the BLISS signature algorithm for message μ :
- **1** Sample $\mathbf{y}_1 \leftarrow D_{\mathbb{Z}^n,\sigma}$.
- **2** Construct vector \mathbf{u} , using \mathbf{y}_1 and public key \mathbf{A} .
- So Construct challenge $\mathbf{c} = H(\lfloor \mathbf{u} \rceil \mod 2q, \mu) \in \{0, 1\}^n$ with $||\mathbf{c}||_1 = \kappa$
- **③** Generate a random bit *b*. Set $\mathbf{z}_1 = \mathbf{y}_1 + (-1)^b \mathbf{s}_1 \cdot \mathbf{c} \mod 2q$

- Simplified version of the BLISS signature algorithm for message μ :
- **1** Sample $\mathbf{y}_1 \leftarrow D_{\mathbb{Z}^n,\sigma}$.
- **2** Construct vector \mathbf{u} , using \mathbf{y}_1 and public key \mathbf{A} .
- So Construct challenge $\mathbf{c} = H(\lfloor \mathbf{u} \rceil \mod 2q, \mu) \in \{0, 1\}^n$ with $||\mathbf{c}||_1 = \kappa$
- **③** Generate a random bit *b*. Set $\mathbf{z}_1 = \mathbf{y}_1 + (-1)^b \mathbf{s}_1 \cdot \mathbf{c} \mod 2q$
- Solution Return signature (z_1, c) for μ .

- Simplified version of the BLISS signature algorithm for message μ :
- **1** Sample $\mathbf{y}_1 \leftarrow D_{\mathbb{Z}^n,\sigma}$.
- **2** Construct vector \mathbf{u} , using \mathbf{y}_1 and public key \mathbf{A} .
- So Construct challenge $\mathbf{c} = H(\lfloor \mathbf{u} \rceil \mod 2q, \mu) \in \{0, 1\}^n$ with $||\mathbf{c}||_1 = \kappa$
- Generate a random bit b. Set $\mathbf{z}_1 = \mathbf{y}_1 + (-1)^b \mathbf{s}_1 \cdot \mathbf{c} \mod 2q$
- Solution Return signature $(\mathbf{z}_1, \mathbf{c})$ for μ .
- $\mathbf{s}_1 \cdot \mathbf{c} = \mathbf{s}_1 \mathrm{C}$ over \mathbb{Z} for matrix $\mathrm{C} \in \{-1, 0, 1\}^{n \times n}$.

• Simplified version of the BLISS signature algorithm for message μ :

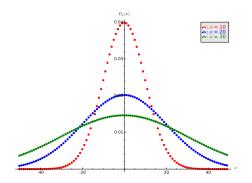
1 Sample
$$\mathbf{y}_1 \leftarrow D_{\mathbb{Z}^n,\sigma}$$
.

- **2** Construct vector \mathbf{u} , using \mathbf{y}_1 and public key \mathbf{A} .
- Source challenge $\mathbf{c} = H(\lfloor \mathbf{u} \rceil \mod 2q, \mu) \in \{0, 1\}^n$ with $||\mathbf{c}||_1 = \kappa$
- **③** Generate a random bit *b*. Set $\mathbf{z}_1 = \mathbf{y}_1 + (-1)^b \mathbf{s}_1 \cdot \mathbf{c} \mod 2q$
- Solution Return signature $(\mathbf{z}_1, \mathbf{c})$ for μ .
 - $\mathbf{s}_1 \cdot \mathbf{c} = \mathbf{s}_1 C$ over \mathbb{Z} for matrix $C \in \{-1, 0, 1\}^{n \times n}$.
 - Equation hidden in signature over Z:

$$\mathbf{z}_1 = \mathbf{y}_1 + (-1)^b \mathbf{s}_1 \mathbf{C}$$

where the unknowns for the attacker are $\mathbf{y}_1, b, \mathbf{s}_1$

Discrete Gaussian Distribution



- Step 1 in signature algorithm: $\mathbf{y} \leftarrow D_{\mathbb{Z}^m,\sigma}$
- This is required to achieve (provable) security and small signature size.
- Not straightforward to do in practice: high precision required.
- But how do we use additional knowledge of ${\boldsymbol y}$ to find ${\boldsymbol s}?$

э

э

• Signature equation: $\mathbf{z} = \mathbf{y} + (-1)^b \mathbf{s} \mathbf{C}$

Scenario 1:

We can determine ${\boldsymbol{y}}$ completely from a side-channel attack

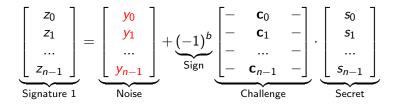
• Signature equation: $\mathbf{z} = \mathbf{y} + (-1)^b \mathbf{s} \mathbf{C}$

Scenario 1:

We can determine **y** completely from a side-channel attack

- Only need one signature.
- Solve equation $(-1)^b(\mathbf{z} \mathbf{y}) = \mathbf{s}C$ for \mathbf{s} .
- But unlikely...(?)

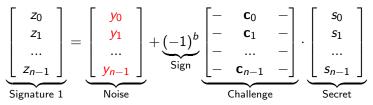
• System of n equations over \mathbb{Z} :



Scenario 2:

There is a small set of values and an attacker can determine y_i when it is in this set.

• System of n equations over \mathbb{Z} :



Scenario 2:

There is a small set of values and an attacker can determine y_i when it is in this set.

- Since this set is small, we need more than one signature.
- Zoom in on coordinate-wise equations:

$$z_i = \mathbf{y}_i + (-1)^b \langle \mathbf{c}_i, \mathbf{s} \rangle$$

• If we know y_i , we save $\zeta_k = \mathbf{c}_i$ in a list with y_i and z_i .

• We can acquire enough of these vectors from multiple signatures and form:

$$\begin{bmatrix} (-1)^{b_0}(z_0 - y_0) \\ (-1)^{b_1}(z_1 - y_1) \\ \dots \\ (-1)^{b_{n-1}}(z_{n-1} - y_{n-1}) \end{bmatrix} = \begin{bmatrix} - & \zeta_0 & - \\ - & \zeta_1 & - \\ - & \dots & - \\ - & \zeta_{n-1} & - \end{bmatrix} \cdot \begin{bmatrix} s_0 \\ s_1 \\ \dots \\ s_{n-1} \end{bmatrix}$$

• Unfortunately: all bits b_i are unknown.

• We can acquire enough of these vectors from multiple signatures and form:

$$\begin{bmatrix} (-1)^{b_0}(z_0 - y_0) \\ (-1)^{b_1}(z_1 - y_1) \\ \dots \\ (-1)^{b_{n-1}}(z_{n-1} - y_{n-1}) \end{bmatrix} = \begin{bmatrix} - & \zeta_0 & - \\ - & \zeta_1 & - \\ - & \dots & - \\ - & \zeta_{n-1} & - \end{bmatrix} \cdot \begin{bmatrix} s_0 \\ s_1 \\ \dots \\ s_{n-1} \end{bmatrix}$$

- Unfortunately: all bits b_i are unknown.
- Trick: if we know y_i, we can be selective and ensure that z_i = y_i, before saving ζ_k = c_i in our list.
- We can eliminate *b*:

$$(-1)^b(z_i-y_i)=0=\langle \zeta_k,\mathbf{s}\rangle$$

- If we know y_i and $z_i = y_i$: we save $\zeta_k = \mathbf{c}_i$.
- Acquire enough of these vectors from multiple signatures and we have equation:

$\boldsymbol{s} \boldsymbol{L} = \boldsymbol{0}$

• With very high probability: secret vector **s** is the only vector in the integer (left) kernel of L.

• Signature equation over \mathbb{Z} : $\mathbf{z} = \mathbf{y} + (-1)^b \mathbf{Cs}$.

• Let us go one step further:

Scenario 3:

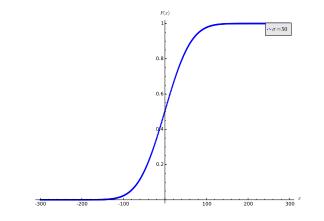
There is a small set of tuples $\{\gamma, \gamma + 1\}$ and an attacker can determine the tuple for y_i when it is in this set. With high probability, $y_i = \gamma$

- Apply same method as previous:
- If we know $y_i \in \{\gamma, \gamma + 1\}$ and $z_i = \gamma$: we save $\zeta_k = \mathbf{c}_i$.
- Now sL is not an all-zero vector, but it is small.
- Use LLL-algorithm to compute small vectors, search for **s** in the unitary transformation matrix.
- Verify correctness with public key.

Cache-Attacking BLISS with CDT Sampling

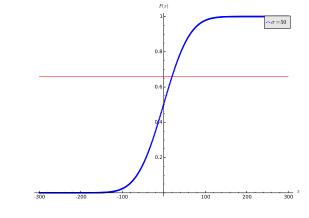
- $\mathbf{y} \leftarrow D_{\mathbb{Z}^m,\sigma}$
- Three attack scenario's using additional knowledge of y.
- Implemented cache-attacks on two discrete Gaussian samplers: CDT sampling and Bernoulli-based sampling, which both use table look-ups.

CDT Sampling with Guide Table



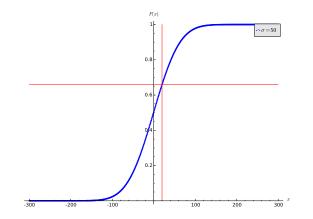
Save values of the discrete Gaussian CDF in table T.

CDT Sampling with Guide Table



2 Generate a random value $r \in [0, 1)$

CDT Sampling with Guide Table



Solution Perform a binary search to find sample x with $T(x-1) \le r < T(x)$.

- Some speed-ups used in practice:
 - Use only non-negative values and pick a random sign at the end.
 - Use additional table I with intervals, to speed-up the binary search

- Some speed-ups used in practice:
 - Use only non-negative values and pick a random sign at the end.
 - Use additional table I with intervals, to speed-up the binary search
- Two types of cache weaknesses:

- Some speed-ups used in practice:
 - Use only non-negative values and pick a random sign at the end.
 - Use additional table I with intervals, to speed-up the binary search
- Two types of cache weaknesses:
 - Intersection (use knowledge of accesses in I and T)

- Some speed-ups used in practice:
 - Use only non-negative values and pick a random sign at the end.
 - Use additional table I with intervals, to speed-up the binary search
- Two types of cache weaknesses:
 - Intersection (use knowledge of accesses in I and T)
 - Last-jump (track the binary search using knowledge of multiple accesses in *T*)

- Some speed-ups used in practice:
 - Use only non-negative values and pick a random sign at the end.
 - Use additional table I with intervals, to speed-up the binary search
- Two types of cache weaknesses:
 - Intersection (use knowledge of accesses in I and T)
 - Last-jump (track the binary search using knowledge of multiple accesses in *T*)
- Find all cache weaknesses for tables *T* and *I* for specific parameter set.

- Some speed-ups used in practice:
 - Use only non-negative values and pick a random sign at the end.
 - Use additional table I with intervals, to speed-up the binary search
- Two types of cache weaknesses:
 - Intersection (use knowledge of accesses in I and T)
 - Last-jump (track the binary search using knowledge of multiple accesses in *T*)
- Find all cache weaknesses for tables *T* and *I* for specific parameter set.
- Use only those weaknesses satisfying:

Scenario 3:

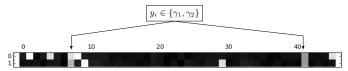
There is a small set of tuples $\{\gamma, \gamma + 1\}$ and an attacker can determine the tuple for y_i when it is in this set. With high probability, $y_i = \gamma$

Experiments

- Results (modelled) cache-attack with perfect side-channel.
- BLISS with CDT sampling:



- Proof-of-concept attack using FLUSH+RELOAD technique.
- Visualization of last-jump weakness:



• Experiments with BLISS-I succeeded 90% of the time.

- Similar method and results achieved for Bernoulli-based sampling method, including experiments.
- Full paper includes analysis of weaknesses of Knuth-Yao and discrete Ziggurat samplers.
- Details in https://eprint.iacr.org/2016/300.