
Flush, Gauss, and Reload
A Cache-Attack on the BLISS Lattice-Based Signature Scheme

Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange and
Yuval Yarom

August 18th, 2016

Flush, Gauss, and Reload August 18th, 2016 1 / 17

Lattice-based Cryptography

Lattice-based cryptography: promising post-quantum secure
alternative.

Active research on theoretical and practical security.

But what about security of implementations?

Flush, Gauss, and Reload August 18th, 2016 2 / 17

This work

The first side-channel attack on a lattice-based signature scheme.

Exploits information leakage from the discrete Gaussian sampler via
cache memory.

Attack target: BLISS, an efficient lattice-based signature scheme.

BLISS also included in strongSwan (library for IPsec-based VPN).

Flush, Gauss, and Reload August 18th, 2016 3 / 17

Cache Timing Attacks

Flush, Gauss, and Reload August 18th, 2016 4 / 17

Cache (Timing) Attacks

Cache-memory: small, fast memory shared among all threads.

Bridge the gap between processor speed and memory speed.

Data is stored in cache-lines, typically 64 Bytes.

L1 Cache

Thread 1

Thread 2

Thread 3

Flush, Gauss, and Reload August 18th, 2016 5 / 17

Cache (Timing) Attacks

Attacker fills specific cache lines with his data.

Cache Memory

Attacker Data

Victim Data

Flush, Gauss, and Reload August 18th, 2016 5 / 17

Cache (Timing) Attacks

Attacker notices that victim uses some part of cache.

Learns cache-line of data used by victim.

Cache Memory

Attacker Data

Victim Data
Victim Table

Flush, Gauss, and Reload August 18th, 2016 5 / 17

BLISS

Flush, Gauss, and Reload August 18th, 2016 6 / 17

BLISS Lattice-based Signature Scheme

Bimodal Lattice Signature Scheme (BLISS) (CRYPTO ’13 by Ducas,
Durmus, Lepoint and Lyubashevsky)

Implementations available via NTRU lattices (polynomials in
Rq = Zq[x]/(xn + 1), n = 2r , prime q).

For f , g ∈ Rq = Zq[x]/(xn + 1):

f · g = fG = gF

where F,G ∈ Zn×n
q , whose columns are rotations of f, g, with possibly

opposite sign:

F =

f0 −fn−1 ... −f1
f1 f0 ... −f2
...
fn−1 fn−2 ... f0

Flush, Gauss, and Reload August 18th, 2016 7 / 17

BLISS Lattice-based Signature Scheme

Secret key S = (f , 2g + 1) ∈ R2
q with f , g sparse and typically entries

in {±1, 0}
Public key A = (a1, a2) ∈ R2

q satisfying:

a1s1 + a2s2 ≡ q mod 2q

Computed as aq = (2g + 1)/f mod 2q (restart if f not invertible) and
A = (2aq, q − 2).

Attacker can validate correctness for candidate of key f with the
public key and compute 2g + 1.

Both −S and S are valid as secret key.

Flush, Gauss, and Reload August 18th, 2016 7 / 17

BLISS Lattice-based Signature Scheme

Simplified version of the BLISS signature algorithm for message µ:

Flush, Gauss, and Reload August 18th, 2016 7 / 17

BLISS Lattice-based Signature Scheme

Simplified version of the BLISS signature algorithm for message µ:

1 Sample y1 ← DZn,σ.

Flush, Gauss, and Reload August 18th, 2016 7 / 17

BLISS Lattice-based Signature Scheme

Simplified version of the BLISS signature algorithm for message µ:

1 Sample y1 ← DZn,σ.

2 Construct vector u, using y1 and public key A.

Flush, Gauss, and Reload August 18th, 2016 7 / 17

BLISS Lattice-based Signature Scheme

Simplified version of the BLISS signature algorithm for message µ:

1 Sample y1 ← DZn,σ.

2 Construct vector u, using y1 and public key A.

3 Construct challenge c = H(bue mod 2q, µ) ∈ {0, 1}n with ||c||1 = κ

Flush, Gauss, and Reload August 18th, 2016 7 / 17

BLISS Lattice-based Signature Scheme

Simplified version of the BLISS signature algorithm for message µ:

1 Sample y1 ← DZn,σ.

2 Construct vector u, using y1 and public key A.

3 Construct challenge c = H(bue mod 2q, µ) ∈ {0, 1}n with ||c||1 = κ

4 Generate a random bit b. Set z1 = y1 + (−1)bs1 · c mod 2q

Flush, Gauss, and Reload August 18th, 2016 7 / 17

BLISS Lattice-based Signature Scheme

Simplified version of the BLISS signature algorithm for message µ:

1 Sample y1 ← DZn,σ.

2 Construct vector u, using y1 and public key A.

3 Construct challenge c = H(bue mod 2q, µ) ∈ {0, 1}n with ||c||1 = κ

4 Generate a random bit b. Set z1 = y1 + (−1)bs1 · c mod 2q

5 Return signature (z1, c) for µ.

Flush, Gauss, and Reload August 18th, 2016 7 / 17

BLISS Lattice-based Signature Scheme

Simplified version of the BLISS signature algorithm for message µ:

1 Sample y1 ← DZn,σ.

2 Construct vector u, using y1 and public key A.

3 Construct challenge c = H(bue mod 2q, µ) ∈ {0, 1}n with ||c||1 = κ

4 Generate a random bit b. Set z1 = y1 + (−1)bs1 · c mod 2q

5 Return signature (z1, c) for µ.

s1 · c = s1C over Z for matrix C ∈ {−1, 0, 1}n×n.

Flush, Gauss, and Reload August 18th, 2016 7 / 17

BLISS Lattice-based Signature Scheme

Simplified version of the BLISS signature algorithm for message µ:

1 Sample y1 ← DZn,σ.

2 Construct vector u, using y1 and public key A.

3 Construct challenge c = H(bue mod 2q, µ) ∈ {0, 1}n with ||c||1 = κ

4 Generate a random bit b. Set z1 = y1 + (−1)bs1 · c mod 2q

5 Return signature (z1, c) for µ.

s1 · c = s1C over Z for matrix C ∈ {−1, 0, 1}n×n.

Equation hidden in signature over Z:

z1 = y1 + (−1)bs1C

where the unknowns for the attacker are y1, b, s1

Flush, Gauss, and Reload August 18th, 2016 7 / 17

Discrete Gaussian Distribution

-40 -20 20 40
x

0.01

0.02

0.03

0.04

Dσ (x)

: σ = 10
: σ = 20
: σ = 30

Step 1 in signature algorithm: y← DZm,σ

This is required to achieve (provable) security and small signature size.

Not straightforward to do in practice: high precision required.

But how do we use additional knowledge of y to find s?

Flush, Gauss, and Reload August 18th, 2016 8 / 17

Attack Scenario’s

Flush, Gauss, and Reload August 18th, 2016 9 / 17

Attack Scenario 1

Signature equation: z = y + (−1)bsC

Scenario 1:
We can determine y completely from a side-channel attack

Flush, Gauss, and Reload August 18th, 2016 10 / 17

Attack Scenario 1

Signature equation: z = y + (−1)bsC

Scenario 1:
We can determine y completely from a side-channel attack

Only need one signature.

Solve equation (−1)b(z− y) = sC for s.

But unlikely...(?)

Flush, Gauss, and Reload August 18th, 2016 10 / 17

Attack Scenario 2

System of n equations over Z:
z0
z1
...

zn−1

︸ ︷︷ ︸
Signature 1

=

y0
y1
...

yn−1

︸ ︷︷ ︸

Noise

+ (−1)b︸ ︷︷ ︸
Sign

− c0 −
− c1 −
− ... −
− cn−1 −

︸ ︷︷ ︸

Challenge

·

s0
s1
...

sn−1

︸ ︷︷ ︸

Secret

Scenario 2:
There is a small set of values and an attacker can determine yi when it is

in this set.

Flush, Gauss, and Reload August 18th, 2016 11 / 17

Attack Scenario 2

System of n equations over Z:
z0
z1
...

zn−1

︸ ︷︷ ︸
Signature 1

=

y0
y1
...

yn−1

︸ ︷︷ ︸

Noise

+ (−1)b︸ ︷︷ ︸
Sign

− c0 −
− c1 −
− ... −
− cn−1 −

︸ ︷︷ ︸

Challenge

·

s0
s1
...

sn−1

︸ ︷︷ ︸

Secret

Scenario 2:
There is a small set of values and an attacker can determine yi when it is

in this set.

Since this set is small, we need more than one signature.
Zoom in on coordinate-wise equations:

zi = yi + (−1)b〈ci , s〉
If we know yi , we save ζk = ci in a list with yi and zi .

Flush, Gauss, and Reload August 18th, 2016 11 / 17

Attack Scenario 2

We can acquire enough of these vectors from multiple signatures and
form:

(−1)b0(z0 − y0)
(−1)b1(z1 − y1)

...
(−1)bn−1(zn−1 − yn−1)

 =

− ζ0 −
− ζ1 −
− ... −
− ζn−1 −

 ·

s0
s1
...
sn−1

Unfortunately: all bits bi are unknown.

Flush, Gauss, and Reload August 18th, 2016 11 / 17

Attack Scenario 2

We can acquire enough of these vectors from multiple signatures and
form:

(−1)b0(z0 − y0)
(−1)b1(z1 − y1)

...
(−1)bn−1(zn−1 − yn−1)

 =

− ζ0 −
− ζ1 −
− ... −
− ζn−1 −

 ·

s0
s1
...
sn−1

Unfortunately: all bits bi are unknown.

Trick: if we know yi , we can be selective and ensure that zi = yi ,
before saving ζk = ci in our list.

We can eliminate b:

(−1)b(zi − yi) = 0 = 〈ζk , s〉

Flush, Gauss, and Reload August 18th, 2016 11 / 17

Attack Scenario 2

If we know yi and zi = yi : we save ζk = ci .

Acquire enough of these vectors from multiple signatures and we have
equation:

sL = 0

With very high probability: secret vector s is the only vector in the
integer (left) kernel of L.

Flush, Gauss, and Reload August 18th, 2016 11 / 17

Attack Scenario 3

Signature equation over Z: z = y + (−1)bCs.

Let us go one step further:

Scenario 3:
There is a small set of tuples {γ, γ + 1} and an attacker can determine the

tuple for yi when it is in this set.
With high probability, yi = γ

Flush, Gauss, and Reload August 18th, 2016 12 / 17

Attack Scenario 3

Apply same method as previous:

If we know yi ∈ {γ, γ + 1} and zi = γ: we save ζk = ci .

Now sL is not an all-zero vector, but it is small.

Use LLL-algorithm to compute small vectors, search for s in the
unitary transformation matrix.

Verify correctness with public key.

Flush, Gauss, and Reload August 18th, 2016 12 / 17

Cache-Attacking BLISS with CDT Sampling

Flush, Gauss, and Reload August 18th, 2016 13 / 17

Cache-attacks on BLISS

y← DZm,σ

Three attack scenario’s using additional knowledge of y.

Implemented cache-attacks on two discrete Gaussian samplers: CDT
sampling and Bernoulli-based sampling, which both use table
look-ups.

Flush, Gauss, and Reload August 18th, 2016 14 / 17

CDT Sampling with Guide Table

-300 -200 -100 100 200 300
x

0.2

0.4

0.6

0.8

1

F(x)

σ=50

1 Save values of the discrete Gaussian CDF in table T .

Some speed-ups used in practice:
Use only non-negative values and pick a random sign at the end.
Use additional table I with intervals, to speed-up the binary search

Two types of cache weaknesses:

Intersection (use knowledge of accesses in I and T)
Last-jump (track the binary search using knowledge of multiple
accesses in T)

Find all cache weaknesses for tables T and I for specific parameter
set.
Use only those weaknesses satisfying:

Flush, Gauss, and Reload August 18th, 2016 15 / 17

CDT Sampling with Guide Table

-300 -200 -100 100 200 300
x

0.2

0.4

0.6

0.8

1

F(x)

σ=50

2 Generate a random value r ∈ [0, 1)

Some speed-ups used in practice:
Use only non-negative values and pick a random sign at the end.
Use additional table I with intervals, to speed-up the binary search

Two types of cache weaknesses:

Intersection (use knowledge of accesses in I and T)
Last-jump (track the binary search using knowledge of multiple
accesses in T)

Find all cache weaknesses for tables T and I for specific parameter
set.
Use only those weaknesses satisfying:

Flush, Gauss, and Reload August 18th, 2016 15 / 17

CDT Sampling with Guide Table

-300 -200 -100 100 200 300
x

0.2

0.4

0.6

0.8

1

F(x)

σ=50

3 Perform a binary search to find sample x with T (x − 1) ≤ r < T (x).

Some speed-ups used in practice:
Use only non-negative values and pick a random sign at the end.
Use additional table I with intervals, to speed-up the binary search

Two types of cache weaknesses:

Intersection (use knowledge of accesses in I and T)
Last-jump (track the binary search using knowledge of multiple
accesses in T)

Find all cache weaknesses for tables T and I for specific parameter
set.
Use only those weaknesses satisfying:

Flush, Gauss, and Reload August 18th, 2016 15 / 17

CDT Sampling with Guide Table

Some speed-ups used in practice:

Use only non-negative values and pick a random sign at the end.
Use additional table I with intervals, to speed-up the binary search

Two types of cache weaknesses:

Intersection (use knowledge of accesses in I and T)
Last-jump (track the binary search using knowledge of multiple
accesses in T)

Find all cache weaknesses for tables T and I for specific parameter
set.

Use only those weaknesses satisfying:

Flush, Gauss, and Reload August 18th, 2016 15 / 17

CDT Sampling with Guide Table

Some speed-ups used in practice:

Use only non-negative values and pick a random sign at the end.
Use additional table I with intervals, to speed-up the binary search

Two types of cache weaknesses:

Intersection (use knowledge of accesses in I and T)
Last-jump (track the binary search using knowledge of multiple
accesses in T)

Find all cache weaknesses for tables T and I for specific parameter
set.

Use only those weaknesses satisfying:

Flush, Gauss, and Reload August 18th, 2016 15 / 17

CDT Sampling with Guide Table

Some speed-ups used in practice:

Use only non-negative values and pick a random sign at the end.
Use additional table I with intervals, to speed-up the binary search

Two types of cache weaknesses:

Intersection (use knowledge of accesses in I and T)

Last-jump (track the binary search using knowledge of multiple
accesses in T)

Find all cache weaknesses for tables T and I for specific parameter
set.

Use only those weaknesses satisfying:

Flush, Gauss, and Reload August 18th, 2016 15 / 17

CDT Sampling with Guide Table

Some speed-ups used in practice:

Use only non-negative values and pick a random sign at the end.
Use additional table I with intervals, to speed-up the binary search

Two types of cache weaknesses:

Intersection (use knowledge of accesses in I and T)
Last-jump (track the binary search using knowledge of multiple
accesses in T)

Find all cache weaknesses for tables T and I for specific parameter
set.

Use only those weaknesses satisfying:

Flush, Gauss, and Reload August 18th, 2016 15 / 17

CDT Sampling with Guide Table

Some speed-ups used in practice:

Use only non-negative values and pick a random sign at the end.
Use additional table I with intervals, to speed-up the binary search

Two types of cache weaknesses:

Intersection (use knowledge of accesses in I and T)
Last-jump (track the binary search using knowledge of multiple
accesses in T)

Find all cache weaknesses for tables T and I for specific parameter
set.

Use only those weaknesses satisfying:

Flush, Gauss, and Reload August 18th, 2016 15 / 17

CDT Sampling with Guide Table

Some speed-ups used in practice:
Use only non-negative values and pick a random sign at the end.
Use additional table I with intervals, to speed-up the binary search

Two types of cache weaknesses:
Intersection (use knowledge of accesses in I and T)
Last-jump (track the binary search using knowledge of multiple
accesses in T)

Find all cache weaknesses for tables T and I for specific parameter
set.
Use only those weaknesses satisfying:

Scenario 3:
There is a small set of tuples {γ, γ + 1} and an attacker can determine the

tuple for yi when it is in this set.
With high probability, yi = γ

Flush, Gauss, and Reload August 18th, 2016 15 / 17

Experiments

Results (modelled) cache-attack with perfect side-channel.

BLISS with CDT sampling:

0 1 2 3 4 5
(n + i) equations

0.5

0.6

0.7

0.8

0.9

1

Psucc

BLISS-0
BLISS-1
BLISS-2
BLISS-3
BLISS-4

Flush, Gauss, and Reload August 18th, 2016 16 / 17

Experiments

Proof-of-concept attack using Flush+Reload technique.

Visualization of last-jump weakness:

yi ∈ {γ1, γ2}

Experiments with BLISS-I succeeded 90% of the time.

Flush, Gauss, and Reload August 18th, 2016 16 / 17

Details in full paper

Similar method and results achieved for Bernoulli-based sampling
method, including experiments.

Full paper includes analysis of weaknesses of Knuth-Yao and discrete
Ziggurat samplers.

Details in https://eprint.iacr.org/2016/300.

Flush, Gauss, and Reload August 18th, 2016 17 / 17

